

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 24.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let \mathcal{H} be an Hilbert space. Let A and B linear operators on \mathcal{H} such that there exists $\alpha \in \mathbb{C} \setminus \{0\}$ such that

$$[A, B] = \alpha \text{id}. \quad (1)$$

Prove that A and B cannot be both bounded.

Hint: Assume both bounded; consider $\|[A, B^n]\|$ and find an absurd.

Exercise 2

a Prove that for any $\alpha \in \mathbb{C}$ such that $\operatorname{Re}(\alpha) > 0$,

$$\left(\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx \right)^2 = \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2\alpha}} dx dy \quad (2)$$

$$= 2\pi\alpha, \quad (3)$$

where the integral over \mathbb{R}^2 can be evaluated using polar coordinates. Deduce that

$$\int_{\mathbb{R}} e^{-\frac{x^2}{2\alpha}} dx = \sqrt{2\pi\alpha}, \quad (4)$$

where the square root is the one with positive real part.

b For all $B \geq A > 0$ and $\alpha \in \mathbb{C} \setminus \{0\}$ we have

$$\int_A^B e^{-\frac{x^2}{2\alpha}} dx = -\frac{\alpha}{x} e^{-\frac{x^2}{2\alpha}} \Big|_A^B - \int_A^B \frac{\alpha}{x^2} e^{-\frac{x^2}{2\alpha}} dx. \quad (5)$$

Using this, prove that the integral in (4) is convergent for all nonzero α with $\operatorname{Re}(\alpha) \geq 0$, provided the integral is interpreted as a principle value when not absolutely convergent, where the principal value is defined as

$$\operatorname{PV} \int_{\mathbb{R}} f(x) dx := \lim_{R \rightarrow \infty} \int_{-R}^R f(x) dx. \quad (6)$$

c Prove that the result of **a** is also valid for nonzero values of α with $\operatorname{Re}(\alpha) = 0$, at least in the principal value.

Hint: Given $\eta \neq 0$, show that the principal value from A to $+\infty$ of $\exp\left[-\frac{x^2}{2(\gamma+i\eta)}\right]$ is small for large A , uniformly in $\gamma \in [0, 1]$.

d Prove that

$$\frac{1}{2\pi} \operatorname{PV} \int_{\mathbb{R}} e^{ikx} e^{-i\frac{\hbar t}{2m}k^2} dk = \sqrt{\frac{m}{2\pi i \hbar t}} e^{i\frac{m}{2\hbar t}x^2}, \quad (7)$$

where the square root is the one with real positive part.

Exercise 3

Consider a separable Hilbert space \mathcal{H} and a complete orthonormal system for it $\{\varphi_n\}_{n \in \mathbb{N}}$. Assume that φ_∞ cannot be written as a finite linear combination of elements of $\{\varphi_n\}_{n \in \mathbb{N}}$. Let D denote the dense linear subspace of \mathcal{H} consisting of all finite linear combinations of elements of $\{\varphi_n\}_{n \in \mathbb{N}}$ and of φ_∞ . On D define the operator $T : D \rightarrow \mathcal{H}$ defined as

$$T \left(\alpha_\infty \varphi_\infty + \sum_{n \in \mathbb{N}} \alpha_n \varphi_n \right) := \alpha_\infty \varphi_\infty. \quad (8)$$

Prove that T is not bounded.

Hint: Use the closed graph theorem.

Exercise 4

Recall the definition of $H^2(\mathbb{R})$ as

$$H^2(\mathbb{R}) := \left\{ \psi \in L^2(\mathbb{R}) \mid k^2 \hat{\psi} \in L^2(\mathbb{R}) \right\}$$

Recall that in class we defined the map that to any initial datum $\psi_0 \in L^2(\mathbb{R})$ would associate $\psi_t := \tilde{U}_0(t) \psi_0$, defined via the Hamiltonian $H_0 := -\frac{\partial^2}{\partial x^2}$ with domain $\mathcal{D}(H_0) = H^2(\mathbb{R})$. Indeed if $U_0(t) \psi_0$ is defined for any $\psi_0 \in \mathcal{S}(\mathbb{R})$ as the unique solution to

$$\begin{cases} i\hbar \partial_t (U_0(t) \psi_0) = H_0 U_0(t) \psi_0 \\ U_0(t) \psi_0|_{t=0} = \psi_0, \end{cases} \quad (9)$$

then $\tilde{U}_0(t)$ is defined by density on the whole space $L^2(\mathbb{R})$, and coincides with $U_0(t)$ on $\mathcal{S}(\mathbb{R})$.

Prove that if $\psi_0 \in \mathcal{D}(H_0)$ then $\psi_t \in \mathcal{D}(H_0)$.